Regenerative Farming

Wet on Top — Dry Underneath – Guest Post by Niels Corfield

Wet on Top — Dry Underneath – Guest Post by Niels Corfield 1500 843 Soilmentor

This is a guest post by Niels Corfield, Independent Farming Advisor and Educator. Learn about his courses here.

The winter of 2019/20 was challenging for farmers to say the least. Incessant rain meaning fields were not accessible, and winter crops were not sowed, large areas of flat or low lying country flooded (sometimes repeatedly) and otherwise generally redefining the concept of mud.

By springtime, what was the ground like out there? Wet, soft, or already hardening-up? Chances are it was the latter. So how can this be, after the wettest winter in living memory? When the ground across the farm (and the country), it seems, was saturated.

What if I said, that it’s the same root cause that produces both drought and flooding? That your farm, whether it be cropping or grazing, organic or conventional can be reworked to be both drought-proof and immune to extreme rain events. Sound too good to be true? Well read on.

If it’s not there when it’s wet, it’s not there when it’s dry

First we better rewind a few steps and show so how it is that a single causal factor is responsible for droughts and flooding.

This single causal factor means that on the one hand (in 2018) we were feeding-out first-cut silage and achieving little or no grain-fill and this winter we ended-up with maize harvests that looked like the battle of the Somme (reparable but not good optics).

Management Dictates Infiltration

Time to Infiltrate 1″ of Water: 7 seconds (field margin, at left) — 20+mins (reseeded pasture)

Above we see two spade samples of the same soil type on the same day, margin on the left and grazed pasture on the right, recently reseeded.

Simply put, the causal factor is a lack of infiltration (or low infiltration rates) in all but the lightest or stoniest of soils — and a lack of water retention in these soils. The water that falls as rain has only one of two places to go – either into (and through) the soil OR away as runoff.

If your soil is very light or naturally free draining that water will go straight through, and in heavier soils that water will run-off. In both cases that water has left and has not been retained within the soil profile.

But our soils were clearly saturated this winter, I hear you say! How can you be suggesting there’s a lack of infiltration?
Well, the experience is, that it’s the surface of these soils that was at capacity, the bulk soil was dry, often very dry. See soil pictured below for an illustration.

Soil Sample: well hydrated in top 2″, dry below. Standing water and loamy soils.

You’ve got one chance, and one chance only, to get the water into your soil and that’s when it rains, as infiltration.

Without infiltration that water will run off. It’s a simple choice – where would we prefer to have our rainfall: in the soil where it can grow crops and forage, or in the valleys where it fills up like a bathtub: damaging property, and causing travel disruption and economic impact?

It seems counter-intuitive to say we want more water in our soils, given the experiences of winter we’ve just had. Surely, all that mud and saturation wants to be mitigated, by drainage or other means?

Well, no, in a word.

What we are looking for is deep penetration into – and through the soil profile.

Structure

So what does this mean? What is this indicative of?

Simply that these soils lack pore space. They often are blocky and consolidated and largely just structured in their “native”, mineral state (where all the soil particles are bonded to each other, in a tight crystalline state). These bonds are strong, but brittle, so when they fail, they may well “cleave” along fault lines, revealing: cracks, jagged edges and angular shapes.

At the landscape scale what features do we associate with these terms (and shapes)?

Generally: cliffs, rock faces, and mountains. And what is the study of these materials and these types of features? It’s geology.
Simply put, if your soil looks and behaves like geology: it shatters, cracks or cleaves, has the appearance of rocks or stone, it is geology.

Which makes sense because the sand, silt and clay is basically just ground up rock. However, when we refer to soil that’s just sand, silt and clay, it’s subsoil (in old money). Fundamentally, the difference between subsoil and topsoil is that topsoil is subsoil that has been acted upon by biology.

And what is biology’s influence on the soil structure? Primarily the creation of pore space. Converting the soil from its native, homogeneous state where the soil particles “pack” readily, into to a heterogeneous state, binding together disparate soil particles into crumbs or “aggregates” with a network of internal voids running between them.

Just as a biscuit maker converts base ingredients, flour and sugar, into crumbs with the addition of a binding agent, like butter. Where the flour and sugar particles are effectively the same size as one another, but once the binding agent is added those crumbs that result now have a large variation in size, from something like a bowling ball down to a golf ball.

In the case of the soil, our sugar is analogous to sand (coarse, granular), while the clay is analogous to flour (since if you purchase dried clay it comes bagged, as a powder). In soil, the aggregates are bound together by sticky substances like polysaccharides (carbohydrates) that are secreted by organisms like bacteria. In the same way that if you’ve ever got slug trail on your clothing it goes on sticky, cannot easily be washed off and sets hard, in other words these compounds are glue-like in nature.

So, we can say that soil aggregates are literally glued together by the secretions of biology.

This is what gives soil it’s friable crumbly and easily workable texture.

Fundamentally it’s this crumb structure and the pore space that facilitates infiltration. Over and above what the native soil does alone.

Moreover, with light soils these crumbs increase the surface area and with-it water holding capacity making them more moisture retentive. Since these surfaces of the aggregates are places where water films form. And it’s these billions of tiny water films throughout the soil volume that gives it its water holding capacity.
In heavy soils the opposite is the case, it serves to make the soil more free-draining. By opening up the dense structure and introducing pore spaces. Spaces that are interconnected, through which rainfall can easily percolate whilst also collecting around the aggregates as water films.
In both cases this forms a water reserve that can be drawn upon by crops and forages in the sunny, warm periods that are optimal for growth and grain fill.

So, with the exception of a small number of self-aggregating soils, crumb structure is entirely a product of biological activity and an expression of the carbon cycle in action, as these are carbon-based compounds, derived from plants, often root exudates (sugars).

It’s these processes at play in the above example comparing margin with reseeded pasture

Management Determines Infiltration Rates

So, what can you do, how can you achieve this friable structure without necessarily going to grass? Simply put, apply the soil health principles at every stage of your cropping and management practices.

Pasture vs Covered Arable vs Bare Arable (Photo: LSU AgCenter)

Simply put here in the UK we are not victims of either too much or too little rainfall, just inadequate infiltration or retention. In a cropping situation it’s not only the lack of pore space but also surface capping (from rainsplash etc)

As Yoda might say:
“Hmm, not how much it rains that matters, how much we retain, it does.”

So in one fell swoop by fixing infiltration we not only do ourselves a favour: eliminating muddy conditions and poor field access options early and late season, we also optimise production through seasons like 2018.

Learn all about soil health and regenerative farming! Upcoming courses and workshops by Niels Corfield: Specialist Training courses for farmers, growers & land managers.

Courses focus on soil health and include specific courses for pasture, arable and horticulture. As well as regenerative grazing and whole farm planning.

All courses are now online.
Find out more HERE

Soilmentor makes it easy to monitor infiltration rates over time – discover how well your land is soaking up water now, and see how changes in management impact/improve infiltration rates (and other metrics!).

Beneficial insect focus: Spiders – Ben Harrington, Edaphos

Beneficial insect focus: Spiders – Ben Harrington, Edaphos 591 340 Soilmentor

Edaphos offers agronomy services on all types of farms in all situations. Their philosophy is to improve soil and plant health, whilst harnessing the soils stored resources to their full potential to achieve a healthy, well balanced system.

Increasing biocontrol on farms by raising awareness of the beneficial insect community could lead to reduced pesticide use, costs and better support our own environment. In this blog we will be focusing on Spiders (which are arachnids and not an insect but certainly a most valued beneficial predator) through conservation biocontrol!

Before going into Spiders in detail, it is important to understand that to enable conservation biocontrol it is a direct focus on increasing the numbers and diversity of naturally occurring beneficial insects that are already within the area. To create a successful biocontrol through conservation alongside farming, predators and parasitoids need to thrive more so than in smaller production systems due to the fact that fields are subject to a whole host of management from us through mainly pesticide use, tillage, baling, mowing of margins and the management of field borders. Because a lot of fields are subject to the above, they don’t provide enough shelter, forage and overwintering habitat for many of our beneficial insects that would provide us with the wonderful benefits of pest control in crop and as a knock on effect, this also has an impact on other wildlife, pollinators and birds that are in a declining population.

The focus of conservation biocontrol is to focus on creating the necessary food and shelter and any other needs that has been proven to increasing numbers of beneficial insects. Once these are in place the biocontrol system will continue to develop and persist year on year as natures cycle of life and natural balance take place.

Back onto the Spiders! Hopefully over the winter and into the spring, many of you will have experienced spiders while walking crops, alongside margins or noticed a glint of an expanse of webs across the crop that is most noticeable at dawn and dusk which is a great sign and start to creating your biocontrol community.

Spiders are often the most abundant predator in agriculture although they play good and bad roles towards our purpose. Spiders are generalist predators which may feed indiscriminately on other insects and as you might expect for certain species their webs can cause chaos to any insects that fly.

Spider life cycles vary a lot between Arachne species, from species that have one generation per year and live for 2-3 years to those that are very short lived and have multiple generations per year. Spiders may lay eggs within silken nests in the soil, grass clumps, plant debris, under bark or inside hollow stalks of vegetation which these are the areas the adults also overwinter in as well.

For web-spinning species, vegetation as crops and weeds or a soil surface with adequate trash to create a diverse architecture provides a suitable habitat and hunting ground to spin webs. Leaving trash on a more cloddy surface with straw still standing helps retain web-spinning spiders in the autumn and the presence of the diverse architecture from the crop and arable weeds provides a suitable hunting ground in the spring and summer. Some web spinning spiders are capable of producing a long thread in which they can disperse themselves over long distances in a process called ballooning where they are carried in the wind. Web Spinning Spiders can offer us the first and one of the most effective controls against aphids in the autumn by covering whole fields in their threads from ballooning into and across the field. When they are present, you can easily see how and why they are so effective at aphid control and not many pests would get through their hunting grounds.

Wolf Spider (Wildlife Trusts, 2020)

For the hunting spiders such as Wolf Spiders and Jumping Spiders, they don’t rely on creating a hunting ground with their webs and will persist generally along field margins, hedgerows and plant foliage to hunt on the ground and will travel 50 metres into the field from these areas.

It is important to know that the more mobile species of Spider will only settle in locations with sufficient levels of prey and as such will show responses to prey densities. If you do not have the diversity or insect populations spiders will not be abundant.

To encourage the establishment of spiders you will want to integrate field margins as hedgerows, grass and pollinator strips into the field. Splitting fields with beetle banks or wildflower strips can help massively to improve coverage of these species into the field. Leaving crop residue and trash on the surface and leaving clods within the field will also give the spiders a diversity to their habitat and enable them to hunt effectively. Cover crops can also help to provide an ideal autumn habitat as a hunting ground and nesting site.

Flower rich margin

If you are interested in integrating Mid-Tier schemes for helping to promote Spiders and their necessary habitats and food sources the following would be useful to look into and integrate into the farm: Nectar Flower Mix (AB1 – £511/ha), Beetle Banks (AB3 – 573/ha), Flower Rich Margin and Plots (AB8 – £539/ha), Unharvested Cereal Headland (AB10 – £640/ha), Two Year Sown Legume Fallow (AB15 – £522), Autumn Sown Bumblebird Mix (AB16 – £550/ha), 4-6m Buffer Strips on cultivated land (SW1 – £353), In-field Grass Strips (SW3 – £557/ha), Winter Cover Crops (SW6 – £114/ha) and Woodland Edges on Arable Land (WD3 – £323/ha).

Spiders are highly vulnerable to pyrethroid insecticides and through good practice and management such as not spraying all fields with insecticide in one year and leaving some untreated, adhering to spray buffer zones and not spraying insecticides close to margins we should be able to minimise the risk to our populations of beneficials.

Want to know more about Regenerative Farming? Here are our top resources!

Want to know more about Regenerative Farming? Here are our top resources! 595 596 Soilmentor

New to all this? These resources are a great place to start:
(scroll down for more in-depth info)

Short video: What is regenerative agriculture?

Still not sure exactly what it means to be a regenerative farmer? This is a great short video to get you up to speed;  the key messages of regenerative farming are brought to life in colourful animations.

Talk: Charles Massy – TEDx

Now you know what regenerative farming is, but how do you apply it? Charles Massy’s talk at TEDxCanberra “How regenerative farming can help heal the planet and human health” is an inspiring resource that discusses the wider impacts of an ecological approach to farming.

Talk & in the field: Nicole Masters – renowned agroecologist

Meet Nicole, who shares insights in this video on the regenerative agriculture movement in New Zealand. Find out about the importance of soil biology and the profitability of regenerative practises. Watch more of Nicole’s videos here.

Talk: Gabe Brown – Keys to Building a Healthy Soil

Gabe Brown’s lecture at the Idaho Sustainable Agriculture symposium is a great in-depth explanation of how regenerative agriculture methods keep soil healthy.

Youtube: Groundswell Agriculture

Our next stop is the Groundswell youtube channel, sharing recordings of facsinating talks from their past events. Word on the street is there will be new videos posted in lieu of this year’s cancelled show – so worth a subscribe to stay in the loop!

Podcast: Farmerama Radio

Our sister podcast – Farmerama shares new regenerative farming stories every month. The recent five-part series ‘Cereal’ is worth checking out – taking a deep dive on cereals, milling, baking, supply chains, and the importance of regenerating this system.

Youtube: Cotswold Seeds

The Cotswold Seeds Youtube channel has some great resources on the benefits of diversifying your rotation, and the amazing benefits cover crops and herbal leys can provide for soil health.

Ready to dive deeper into regenerative farming? Let’s go!

Articles, Audio & Video: Integrated Soils

There’s a great list of resources on Joel Wiliams’s Integrated Soils website – including audio clips, videos, and articles worth exploring to learn from Joel’s experience in soil health, plant nutrition and sustainable food production.

Farmer profiles, Research, Blogs: Agricology

Thirsty for more? Agricology is a knowledge exchange network, providing an interface between farmers, researchers and organisations. The Agricology site is bursting with innovative resources, with a focus on agroecological methods that are practical and sustainable.

Articles, Research & Podcasts: Sustainable Food Trust

Regenerative farming is all about healthy food. The Sustainable Food Trust website is home to a plethora of great articles and informative resources which aim “to accelerate the transition to more sustainable food systems”. The SFT podcast is also well worth checking out – including interviews with some key figures in sustainable farming and policy.

Podcast: Regenerative Agriculture with John Kempf

This is a brilliant podcast for anyone who wants to learn about the science and principles behind regenerative farming. A regenerative feast for the ears!

Research, Videos & Community: The Savory Institute

The Savory Institute is a great resource for those interested in mob grazing of livestock for the regeneration of grasslands. There are plenty of informative videos and information on regional holistic grazing hubs to connect with.

Innovative thinking: The College for Real Farming and Food Culture

The College for Real Farming and Food Culture aim to establish Enlightened Agriculture as the global norm, and to encourage complementary food cultures. Their website is full of interesting information about the college and its ideas.

Blog & Courses: Niels Corfield, Soils Advisor

Our resident soils advisor has a great selection of informative regenerative agriculture blogs on Medium – it’s well worth digging into this archive!

Courses: FarmEd

FarmEd is the centre for Farming & Food Education, with a mission “to accelerate the transition towards regenerative farming and sustainable food systems”. The website has some great resources to read up on, we particularly enjoy their seasonal wildlife updates!

Handbook: Regrarians

The Regrarians handbook is a positive, practical and pragmatic guide to regenerating human, plant and animal lives along with productive landscapes. The full text is paid for, but worth it!

Innovation for Agriculture

Innovation for Agriculture have a fab mix of resources covering regenerative farming, livestock, soil and water. In particular they share information from their Animals to Arable conference, which was all about integrating livestock into arable rotations to improve soil health.

What do you think, feeling up to speed now? Let us know if you have any resources to add – contact us